On miniaturized problems in parameterized complexity theory
نویسندگان
چکیده
منابع مشابه
On Miniaturized Problems in Parameterized Complexity Theory
We introduce a general notion of miniaturization of a problem that comprises the different miniaturizations of concrete problems considered so far. We develop parts of the basic theory of miniaturizations. Using the appropriate logical formalism, we show that the miniaturization of a definable problem in W[t] lies in W[t], too. In particular, the miniaturization of the dominating set problem is...
متن کاملOn the Space Complexity of Parameterized Problems
Parameterized complexity theory measures the complexity of computational problems predominantly in terms of their parameterized time complexity. The purpose of the present paper is to demonstrate that the study of parameterized space complexity can give new insights into the complexity of well-studied parameterized problems like the feedback vertex set problem. We show that the undirected and t...
متن کاملParameterized Complexity of Geometric Problems
This paper surveys parameterized complexity results for NP-hard geometric problems. Geometric problems arise frequently in application domains as diverse as computer graphics [19], computer vision [4, 35, 43], VLSI design [64], geographic information systems [73, 30], graph drawing [72], and robotics [65, 37], and typically involve (sets of) geometric objects, such as, points, line segments, ba...
متن کاملMachine-based methods in parameterized complexity theory
We give machine characterizations of most parameterized complexity classes, in particular, of W[P], of the classes of the W-hierarchy, and of the A-hierarchy. For example, we characterize W[P] as the class of all parameterized problems decidable by a nondeterministic fixed-parameter tractable algorithm whose number of nondeterministic steps is bounded in terms of the parameter. The machine char...
متن کاملParameterized Complexity of Weak Odd Domination Problems
Given a graph G = (V,E), a subset B ⊆ V of vertices is a weak odd dominated (WOD) set if there exists D ⊆ V \B such that every vertex in B has an odd number of neighbours in D. κ(G) denotes the size of the largest WOD set, and κ′(G) the size of the smallest non-WOD set. The maximum of κ(G) and |V | − κ′(G), denoted κQ(G), plays a crucial role in quantum cryptography. In particular deciding, giv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2006
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2005.10.003